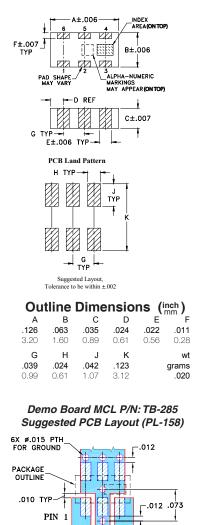
Ceramic High Pass Filter

50Ω 6000 to 11500 MHz


Maximum Ratings

Operating Temperature	-55°C to 100°C	
Storage Temperature	-55°C to 100°C	
RF Power Input*	7W max. at 25°C	
*Passband rating, derate linearly to 3W at 100°C ambient. Permanent damage may occur if any of these limits are exceeded.		

Pin Connections

RF IN	1
RF OUT	3
GROUND	2,4,5,6

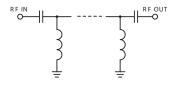
Outline Drawing

Features

- Low cost
- Small size
- 5 sections
- Temperature stable • Excellent power handling, 7W
- Hermetically sealed
- LTCC construction
- Protected by US Patent 7,760,485

Applications

- Sub-harmonic rejection
- Transmitters / receivers



Electrical Specifications^(1,2) at 25°C STOPBAND PASSBAND POWER NO. OF fco, MHz VSWR (MHz) (MHz) INPUT SECTIONS Nom. Тур. Frequency (W) (Loss > 30dB) (Loss > 20dB) (Loss 3 dB) (Loss < 1.5dB) (Loss < 2dB) (MHz) Min. Max. Max Stopband 1.5:1 Max. Typ. Тур. 4000 4500 5500 6600-10000 6000-11500 5600-11000 20:1 7 5

(1) In Application where DC voltage is present at either input or output ports, coupling capacitors are required. Alternatively, Mini-Circuits' "D" suffix version of this model will provide>100 MOhm isolation to ground. (2) Measured on Mini-Circuits Characterization Test Board TB-285.

typical frequency response 40dB **ATTENUATION** 20dB 3dB FCO F 1.3dB FREQUENCY

electrical schematic

Typical Performance Data at 25°C

Guggested Layout,	Frequency (MHz)	Insertion Loss (dB)	VSWR (:1)	
$\begin{array}{c c} \hline \text{Tolerance to be within \pm .002 \\ \hline \textbf{Outline Dimensions} & (inch) \\ \hline \textbf{A} & \textbf{B} & \textbf{C} & \textbf{D} & \textbf{E} & \textbf{F} \\ \hline \textbf{.126} & .063 & .035 & .024 & .022 & .011 \\ \hline \textbf{3}.20 & 1.60 & 0.89 & 0.61 & 0.56 & 0.28 \\ \hline \end{array}$	50 500 1000 3250 4000	63.32 41.73 36.12 44.07 32.16	1737.18 868.59 434.30 62.05 45.72	
G H J K wt .039 .024 .042 .123 grams 0.99 0.61 1.07 3.12 .020	4500 5000 5500 5600 6000	27.90 26.03 3.24 2.05 1.39	34.75 22.29 2.44 1.53 1.53	
Demo Board MCL P/N: TB-285 Suggested PCB Layout (PL-158) 6X Ø.015 PTH FOR GROUND	6600 9000 10000 11500 12000	1.05 1.09 0.79 1.18 1.71	1.22 1.60 1.24 1.64 2.05	
PACKAGE OUTLINE .010 TYP PIN 1 .044 ± .002	HFCN-5500 INSERTION LOSS	10000 1000 W SS 100	HFCN-5500 VSWR	
TRACE WIDTH, 2 PL	N 20 N 20		4000 6000 8000 10000 12000	

DENOTES COPPER LAND PATTERN FREE OF SOLDERMASK Notes

Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document A. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable stabilished test performance criteria and measurement instructions. The parts covered by this specification document are subject to Mini-Circuit standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

REV. J M158161 EDR-6982/3 HECN-5500 RAV/CP/AM 160922

FREQUENCY (MHz)

Mini-Circuits

FREQUENCY (MHz)